Knapsack primes

solved by tomato

I was wondering why knapsacks used only addition but not multiplication of primes so I created one for you :o have fun!

We are given knapsack_primes_chall.py:

knapsack_primes_chall.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from Crypto.Util.number import getPrime
from math import gcd

flag = b'YBN24{????????????????????????????}'

def gen_private():
    a = []
    for i in range(8):
        a.append(getPrime(128))
    return sorted(a)

def gen_public(a):
    while True:
        b = []
        n = getPrime(256)
        m = getPrime(256)

        for i in range(8):
            b.append((a[i] * n) % m)
        
        if all(gcd(i,j) == 1 or i == j for i in b for j in b):
            break
    return (n, m, b)

def encrypt(flag, b):
    enc = []
    in_bins = []

    for char in flag:
        in_bin = f'{char:08b}' 
        in_bins.append(in_bin)

        c = 1
        for i in range(len(in_bin)):
            if in_bin[i] == '1':
                c *= b[i]
        enc.append(c)
        
    return enc, in_bins

a = gen_private()
n,m,b = gen_public(a)
enc, in_bins = encrypt(flag, b)
print('n =',n)
print('m =',m)
print('enc =',enc)

and knapsack_primes_output.txt:

knapsack_primes_output.txt
1
2
3
n = 69445536039141548709981721571866113401602879002160450287075363762901927607533
m = 101441574708806390006875152196799734893549039523990755785821399979419806943511
enc = [7190014366077632299029977702076324295997188075603137450819370327874755152687047838239786627501157729363616956118566819285098429491573611114073030591829561445210638862244012057372125782865463003610413177891466422100934098271624683522978711334832396442062707669213093866143515397190548542180863385656763546817, 641963578196982921615671179191265672018394031399430908711768563973382030779294576305708409488258114130314799237643016183961265888719935490644545603167310, 438138967816855189399376492183537053308500152235099915155256598166952380307719367967364102490451027636673157445700932670923901547542903773586387261561613748590383873500522922677940837092428201064096111714455359018566584575645535589112297801130309000440181477587376521769943350836635663772022324587376754470, 66533972125588203934965488439503055214619702148529456145871458052929995571824126881907940137785473255655654364597062900097287801548975079130525586592611414738537486577813737631271830271829424602906045873654818436823085563997664630, 52575798778890162749169735842645954634769716496542684712210550480144238781509130247821096253553095062028869608836303603869389997676896847081394598163381090244536307360777764494625056127269273407660294724327551720897994694419260583, 9372678326894865356488289664455522341586053151244623100257508117077408498768321294358450224703034107926347196116354870872216328722359438299288001857805313839139665806198558663050348784925533019038398347171948611286518741206489057607408620811639652607467310733886211215816401415707413258436600332426445040319586501862902154770068628686066966717544413898849264825093985497523045355945380925891614542187819225548402517177561944275641202158718590376329666295375490, 183634473560328819212665065481413955837907161204315555898365448222573912474403825751094647626486244789971260719172274242097447486466378871599314065889534433616982423833522934651340117492064986766607493152325726237551088771267259736646936578496368036167081027959172519739825216513919113432212957018334761189935499934833351107106801003201545813600511978609537967597902862391613330110310, 38467007029426618167719241484120645018949356795192398816066031219793199822319616166337319532100110060163273175249063095731075096197780408132955847055146094090727110882898813540979777382131659531085575230763802467526046518730610717732188960151164041171320492669108163928499585327570609342567064346503941186711895994284606990353576141746358586227998691705284221665894658973367343914170, 52575798778890162749169735842645954634769716496542684712210550480144238781509130247821096253553095062028869608836303603869389997676896847081394598163381090244536307360777764494625056127269273407660294724327551720897994694419260583, 193748774860669485717579974515231254855741671527081444616364777850577361086905056855978824126390422722099782886361259791891601916303189857560223436373891594415783098559743170380014778881550887434479304703393480238092788183597745757, 2944771238707506948774447734034564293291594096762784952387309536381705739943331675801245452960314540595796606910356494510912501020009267340858593499272337592171232295305321127669146938920098573170672136007833355385902153938282449043942108658129027427675570262286452576182762360943741325065317790911045862083, 43236740981823340421614846369992164566446121448164155900287241526690252726153, 3156840126595753463680034615678100118426753332722026161347355467436343864421540317382966064850102313135338629280022470893968812512542549648349422851135570272530869885139477349718704192932125322883545139855456102813644462456039002664355501339444294935665526295230496262841588914246416496237888636155047640410, 183634473560328819212665065481413955837907161204315555898365448222573912474403825751094647626486244789971260719172274242097447486466378871599314065889534433616982423833522934651340117492064986766607493152325726237551088771267259736646936578496368036167081027959172519739825216513919113432212957018334761189935499934833351107106801003201545813600511978609537967597902862391613330110310, 1252526900014711095595280972313242758198269141084265122091894776411109380811082989935202734876629025222240752081083789909165730806948034837590032475014967264414925013346351477105098395053315599448161636820387022149022288139269716847319777427927608243762434013624460797541602328538575268616536957785947685181609509212083627330413815002074430224780410369869136666534635964611798809060850130164749999258743587865870574987691607735912406190572683378173545570525130, 2206797325518343741010542994949867415233679078209235375839806865306097684186656700856551828364121089307318746871067427076988721866407672945005872371050387, 2876712119285911284466700020775969597331472097282503963560528902833062518391548747621734329634206367092263868406829257933055472217059139686699242196067490612844080126567199765877632430800330400448337578370112687661754593332137334400507214342075107073028389106241203040350941192388457659871992939782924068390, 250987271335915664343380903992505859266134242634462199818412738137831480911199195881015204572619356409315469911732340279753224765171546950854558095174854198199673897175851157823341478527085032461314588635475232655993673947149624969, 145109766068846737667439409254815694029351910547493283682346268609019568862216897106934361916011664066927764859328002078332443778586093314917520800149240859661837852403245088041430346996094501342339145848728004863644091434720604109354610235073401638844979200914603144645568487407674576039408288376055873188275140410697951033052048770305905503366675586956608937260172778763191506649471, 3726568726732619299995175990210717592618824030957571808940425042220819691094160428449158575857096594666099117864638426994048782857195038214530519838501294106283016440934232857533029678607093001152694054167723764604469034578218003726393689343442758841354149538225719129293435409831811579564232940666709079630, 161124686788701465784217694821299615315500855930722934294431110618870284127813837387712988812235279792614878746107811015112349436168706157875954524591903212980155535915510022755788447783640951926498230556649935780906142838480306269845704366107803867844719983051110245638626088436569008664078155157446397688856865039297544605895265615638877230545804580158252141498496554965565060563390, 1252526900014711095595280972313242758198269141084265122091894776411109380811082989935202734876629025222240752081083789909165730806948034837590032475014967264414925013346351477105098395053315599448161636820387022149022288139269716847319777427927608243762434013624460797541602328538575268616536957785947685181609509212083627330413815002074430224780410369869136666534635964611798809060850130164749999258743587865870574987691607735912406190572683378173545570525130, 421867372345529136360123216455463909191296680484490788149304386330054839033672560488240234290184243480199992543257693855618509103768336240925211745584591315011987527280220425672580419963336458108225363639888878704450169815139457253194224343801853796684915289826346166466500358895661913626313175561382183170, 35956389161533127704243126671515587394551991976692924490937823635746550985576750516451204150001611011355481555331788234722282828242272040472452768055321358275721352479603950311280595283407157338047795214780762723803735457033522310, 507285929764598533161191123257807124797989840126409763399581627133843800859451865891544578078108450635154071509357006646697141720122318345525688005023171, 1252526900014711095595280972313242758198269141084265122091894776411109380811082989935202734876629025222240752081083789909165730806948034837590032475014967264414925013346351477105098395053315599448161636820387022149022288139269716847319777427927608243762434013624460797541602328538575268616536957785947685181609509212083627330413815002074430224780410369869136666534635964611798809060850130164749999258743587865870574987691607735912406190572683378173545570525130, 2421690478430563383645815677087435931243268147315390081482438531135063618877761739965981023478185655743550218491218316480091270716114123085562225547012653, 2273206193715337837768135492971973936957319748409622157733375379059107070259316762311142122976343719418101001577771304759043678488852113655309838646858210677388027351081886477821367580398399138513596106878576554495681578526107713006446540195904926801096123465658920982592105153779729212706394450566246127199, 4247185828310428627819231347608770546795540503400780921901713651548969064278202934926120928438194836394592009537600915337102125095290821511321083308728338197072840711332082673658758540719351946527107456416891301384316880011109503642368507283536265731177097081145461018293896948104448980757355994283027033270, 52575798778890162749169735842645954634769716496542684712210550480144238781509130247821096253553095062028869608836303603869389997676896847081394598163381090244536307360777764494625056127269273407660294724327551720897994694419260583, 3156840126595753463680034615678100118426753332722026161347355467436343864421540317382966064850102313135338629280022470893968812512542549648349422851135570272530869885139477349718704192932125322883545139855456102813644462456039002664355501339444294935665526295230496262841588914246416496237888636155047640410, 2091595497402890525045225266142409205262150684122032906456918097888638899396240062651260967941891749469212451531014358624650651124574411485840550174553306306970225557878756244234493379665477143666339470621605863558597033742124053209102526113189697315049624099267673706411269044002478119267654268233648833210, 4917475436008450288314944865721220439629335311591982171258058218720343826904996907279765230924232949602784720004549399700456198274872349232118603678880011, 4917475436008450288314944865721220439629335311591982171258058218720343826904996907279765230924232949602784720004549399700456198274872349232118603678880011, 7406382544002259090952208107298770068452903123788298992754063412899829285721138670026187021121483148475903393073711395303690154629266278381500727606382284068724911150556261786018846431964531047596089451417427473388950041305989872395602986065972829874100219558698763780111205954403045953424142592128223987747220896504531726224177114523715706041939816450394348068673988937525424102975514077061604692198707073170832943835231575011773277444951275378408978288938309]

Essentially ignore a,n,ma, n, m but care about how from gen_public the public key is 8 pairwise coprime values that are 256 bits each. Label these values b0,b1,,b7b_0, b_1, \cdots, b_7.

In encrypt, each character of the flag is converted into 8 bits. Each bit decides whether each bnb_n is included in this encrypted value. For example, if the character is Y = 01011001, the included bnb_n would be b1,b3,b4,b7b_1, b_3, b_4, b_7 as the bits at those indexes are 1. Now, take the product of these values, giving b1b3b4b7b_1b_3b_4b_7 for Y. Repeat this for every character of the flag, giving a sequence of integers stored in enc.

Recall that gcd is an extremely efficient algorithm that calculates the greatest common divisor between two numbers. Looking at how each value in enc is some product of a combination of the same eight primes repeatedly, you can expect that by taking gcd smartly between these, you can get the values of bnb_n. For example, consider the first two characters of the flag, Y and B:

Y -> 01011001 -> b1b3b4b7b_1b_3b_4b_7
B -> 01000010 -> b1b6b_1b_6

Taking the gcd\gcd of these values gives b1b_1 as that is the only common factor between these two numbers (and also since all bnb_n are pairwise coprime). Repeating this smartly is enough to recover all values of bnb_n except b0b_0, since all the characters of the flag are ASCII and hence in the range [0,127][0, 127], meaning the most significant bit will always be zero (and hence it is not important anyways).

The first 6 values of flag prefix are sufficient to calculate all values of bnb_n. Since there are only 7 values to recover, I just eyeballed but there is probably a more efficient way.

Y -> 01011001
B -> 01000010
N -> 01001110
2 -> 00110010
4 -> 00110100
{ -> 01111011

1
2
3
4
5
6
7
8
b1 = gcd(enc[0], enc[1])
b3 = gcd(enc[0], enc[3])
b2 = gcd(enc[3], enc[4])//b3
b4 = gcd(enc[0], enc[2])//b1
b5 = gcd(enc[2], enc[4])
b6 = gcd(enc[1], enc[2])//b1
b7 = gcd(enc[0], enc[5])//b1//b3//b4
bs = [b1,b2,b3,b4,b5,b6,b7]

Then, with only 128 combinations of encrypted values, we just have to check which of the 128 each encrypted value corresponds to, to recover the flag. Here is the full solve script:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# sage
enc = ...
b1 = gcd(enc[0], enc[1])
b3 = gcd(enc[0], enc[3])
b2 = gcd(enc[3], enc[4])//b3
b4 = gcd(enc[0], enc[2])//b1
b5 = gcd(enc[2], enc[4])
b6 = gcd(enc[1], enc[2])//b1
b7 = gcd(enc[0], enc[5])//b1//b3//b4
bs = [b1,b2,b3,b4,b5,b6,b7]
knapmap = dict()
for char in range(128):
in_bin = f'{char:08b}'[1:]
c = 1
for i in range(len(in_bin)):
if in_bin[i] == '1':
c *= bs[i]
knapmap[c] = char
print(bytes(knapmap[i] for i in enc))

giving the flag YBN24{kn4p5@ck_Pr1m3s_GCD_At+4cK!!}.